
Theoret. Claim. Acta (Berl.) 43,165-174 (1976) THEORETICA CHIMICA ACTA 
�9 by Springer-Verlag 1976 

A Topological Stochastic Approach to the Study 
of Multidimensional Potential Energy Surfaces of 
Chemical Reactions 
Igor V. Krivoshey and Liudmila A. Sleta 
The A. M. Gorki State University of Khazkov, Kharkov 77, U.S.S.R. 

In this article we propose a new approach for investigating the properties of multi- 
dimensional potential energy surfaces in chemical reactions, based on relations of 
each multidimensional surface to its one-dimensional image which is the chemical 
reaction tree. This approach makes it possible to find a common number of in- 
dependent channels in chemical reactions for complex systems and to construct the 
probable models. 
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1. Introduction 

In recent years quite a number of papers have appeared that are dedicated to the pro- 
perties of two-dimensional potential energy surfaces of chemical reactions. The extension 
of such investigations to cases of greater dimension runs across substantial difficulties, 
since no visual image can be related with an n-dimensional surface when n > 2. The 
present paper aims at suggesting a new approach to describing multidimensional poten- 
tial energy surfaces (PES) of chemical reactions. A multidimensional surface is repre- 
sented by a certain one-dimensional (hence, visual) object called the surface tree. 

As is known, variations of the mutual position of atoms in a molecular system are 
commonly described in terms of the potential energy function permitting a geometrical 
interpretation, namely as some surface in the configurational space [1 ]. Consider a 
potential energy function U(q 1, �9 �9  qn)  depending upon n generalized coordinates of 
the atoms participating in an elementary reaction act. Its corresponding geometrical 
image is an n-dimensional surface in the space of (n + 1) dimensions. This PES corre- 
sponds to a definite electron term of the reactant system, at different configurations 
of the nuclei. Electron terms of the original reactive substances are assumed to be 
correlated with those of the products, which concept is known as the adiabatic approxi- 
mation. Within the framework of the latter every state of the chemical system can be 
related to a representative point on the PES whose motion on the surface would describe 
the reaction [1]. 

According to this theory stationary points of the potential energy function U(q 1, �9 �9 
qn) are to be put in correspondence with definite molecular formations. Thus, local 
maxima and minima are related with the original substances and reaction products, and 
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saddle points correspond to activated complexes. The chemical reaction is describ 
a motion of the representative point from the neighbourhood of the original reacl 
via the activated complex point and on to the point of the surface corresponding 
reactant products. However, at n > 2 the surface of U(ql  . . . . .  qn) cannot be visu 
and from the values of  the stationary points no conclusion can be drawn on their 
position on the PES. Furthermore, an analytic expression for the potential energy 
tion is usually not known, which leads to the necessity of using tables. The tables 
U ( q l ,  �9 �9 ", q n ) ,  calculated for all possible interatomic spacings, are cumbersome a: 
to analyse, thus giving scarce information on the mutual position of the points. Ir 
connection there appears the problem of  finding a class of  mappings of the domai 
U(q 1, �9 �9  qn)  that would tie every n-dimensional surface to a certain one-dimens 
object. Such mappings should meet the condition of preserving the total number 
mutual arrangement of the function's stationary points. This demand invokes atc  
gical analysis of the PES. Indeed, possible reaction channels in the system, as well 
kinetic constants thereof, are determined by the number and mutual position of 
stationary points of U(q 1, . . . ,  qn)  and the values assumed there by the function: 
other words, by the topology of PES extreme points. 

2. One-Dimensional Image of the Multidimensional Potential Energy Surface of tt 

Chemical Reaction 

The one-dimensional image of the multidimensional PES has been suggested by oi 
the authors (see paper [2] ). The mathematical approach is based on the paper by 
A. Kronrod [3] dedicated to one-dimensional properties of functions of  many val 

Consider a function of two variables U(q 1 , q2) possessing two local maxima and 
saddle point. The surface of U(q 1 , q2)  and its plane map are represented in Fig. 1 
is easy to see, equipotential levels of the surface (i.e. the lines U(q 1, q2)  = t) consl 
either one or several connected components. The aggregate of constant-level lines 
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Fig. 1. The components of the U(ql, q2 
sets 
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level set F t of the surface. A representative point moving along component K of the 
level set F t obviously has a constant potential energy t. From this point of view its 
dynamics on the constant-level line is trivial. Of interest are transitions between different 
energy levels. In order to describe the level set we resort to the following procedure. 
Each component of the set Ft will be associated with a single point on a plane, which 
points are to be ordered strictly in accordance with the components' energies. Kronrod's 
result [3] is as follows: If  the function U(ql, q2) is single-valued and continuous, then 
the point set on the plane is a tree. The construction of a surface tree is illustrated in 
Fig. 1. Local maxima of the surface are represented by end points 1 and 2 of the tree, 
the saddle point corresponding to the branch point 3. 

Obviously enough, the level set concept remains valid with surfaces of higher dimension, 
hence the level set of a multidimensional surface can be similarly represented by a one- 
dimensional image, viz. a tree. Formally: 

Let U(q 1, �9 �9 ", q 2 )  be a continuous potential energy function specified in a given 
n-dimensional domain ~.  The level set F t of U(q 1, �9 �9 qn) is defined as a set of all 
points x = (ql . . . . .  q n ) e ~ s u c h  that U(x) = t. The component K of the set F, containing 
point x, is the maximal connected subset FxC F containing that point. According to 
paper [3], for every function U(q 1 . . . . .  qn) there exists a topological space Tcr which 
is the one-dimensional tree U(q 1 . . . .  , qn). Elements of the space T O are components 
of the level sets. Topology can be introduced in Tu  by the following considerations 
[3]. Let M(K) c ~ be an open set containing component K of the level set F t. The 
sum of all the components completely contained in M(K) (that are regarded as points 
in Tu)  is a neighbourhood of element K in the space Tu.  Then it can be easily proved 
that the system of open sets just introduced satisfies the axioms of a topoligical space. 
Further, it can be shown [3] that the space Tcr constructed is a one-dimensional, 
locally connected continuum containing no homeomorphic images of the circle, hence 
a tree (any curve containing no simple closed curve is a topological tree). 

Thus, the level set F t is the function U(q 1 . . . . .  qn) consists of equal-energy lines. 
Components of the set F t are closed potential energy contours each corresponding to 
the same value of the functions U ( q l , . . . ,  qn). Each component of the level set is 
related with a single point, different components being represented by different points 
on the plane. The points can be ordered in accordance with the growing values of 
U(ql . . . . .  qn)" The geometrical image obtained by mapping components of the level 
set on the plane is a tree. Hence, any n-dimensional PES of a chemical reaction can be 
associated with its corresponding tree [3]. All differential properties of the PES are 
completely ignored in the tree but topological properties of the surface that determine 
the number and mutual position of extreme points are retained. 

The one-dimensional tree of  a continuous function consists of  a set of end points and a 
countable number of edges intersecting two by two at one point at the most, which is a 
branch point [3]. The number of branches intersecting at one point is called the vertex 
order [4]. The order of the end point is 1, that of a branch point is p ~> 3 [4]. As has been 
shown in [5], end points of a multidimensional PES correspond to initial reactants or 
products while branch points represent activated complexes. 
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An elementary act of a chemical reaction can be represented as a movement of the 
representative point along an oriented path between points E o (original configuration of 
reactant atoms) and E t (mutual position of reactant atom products). All points of this 
path belong to constant-level contours. Since every component of the level set F t is 
represented on the tree T u ,  every path along the PES will have its corresponding path 
from one tree point to another. 

3. Examples of Chemical Reaction Trees 

Consider the PES of a system of three hydrogen atoms projected on a plane (Fig. 2a) 
[1]. The lines of constant energy are represented by closed curves. Closed contours 
homeomorphic with the circle correspond to regions of local maxima and minima of the 
potential energy function. Closed curves that are homeomorphic with the figure, which 
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Fig. 2. The potential energy surface and tree for the orto-para hydrogen 
transition 

would result from gluing two points of the circle ("eights"), correspond to saddle points 
of the functions. Note that, by definition of the saddle point, the level next to that of 
the activated complex should have a greater value of potential energy. The surface shown 
in Fig. 2a has two valleys corresponding to the original substances and products, an 
energy saddle and a small depression on top of the saddle ("The Eyring Lake"). On the 
tree the valleys are represented by two end points, since the potential energy has local 
minima in those regions. The energy saddle is represented by a branch point. The third 
end point corresponds to the local maximum of the potential energy function. In this 
region the system completely dissociates into three separate hydrogen atoms. The 
fourth end point depicts the small depression on top of the saddle that corresponds to 
the formation of a H3 complex. 

Fig. 3 shows a plane map of the PES and the tree of tautomeric rearrangements for a 
pair of nitrogenous bases (guanine--cytosine) [6]. Points 1,3, 7 and 8 correspond to the 
four possible tautomers in the guanine-cytosine system, points 2, 4 and 6 represent 
activated complexes and point 5 shows the state of the system with no hydrogen bond. 
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Fig. 3. The PES and tautomeric  rearrangements  tree for the guanine-  
cytosine sys tem 

The examples considered illustrate the general approach to constructing the reaction 
tree. If the number of generalized coordinates is n > 2 and the PES is specified with 
a table, there arises the problem of constructing the tree from the knowledge of numerical 
values of the potential energy function. Corresponding techniques will be described in 
another paper. 

4. Non-Adiabat ic  React ion  Model  

Using the concept of the PES tree one can put forward a model for non-adiabatic 
reactions [2, 7]. Such reactions are characterized by a relatively high probability of 
transitions between potential energy surfaces of different electron terms in the reactant 
system. A non-adiabatic reaction can be described by an ensemble of surfaces repre- 
senting linearly independent functions U o, U 1 . . . . .  U s ordered in accordance with the 
growth of total energy value. Each integer value of the subscript s corresponds to a term 
with some constant magnitude of the system's total energy. A non-adiabatic transition 
is described by a "jump" of the representative point from one surface to another [1 ]. 
Hence, any set of non-adiabatic reactions can be described with a "pack" of s planes 
placed one under another (Fig. 4), each of them carrying a tree of U i ( q l  . . . . .  % ) .  The 
system's representative point moves during a non-adiabatic reaction along a path that 
includes points of the tree lying within different planes, with "jumps" between the 
planes. Presumably, "transitions from one plane to another are most probable at branch 
points (activated complexes). If so, then the description of non-adiabatic reactions in 
terms of trees on a "pack" of planes is determinate, in the sense that there is only a 
f'mite definite number of transitions between the planes. 

Every path of the representative point Corresponds to a chemical reaction consisting of a 
finite number of elementary acts. Suppose all the reactions in the chemical system have 
equal probabilities, hence, the probabilities of the corresponding paths are also equal. 
An assumption like this implies equal constants for all the reacitons conceivable, which 
can be true only with rigid limitations on the constants of the elementary acts (e.g. 
reactions with either infinite or infinitesimal constants) [7]. 
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Fig. 4. The non-adiabatic reaction 
model 

Let us introduce statistical weights for every non-adiabatic reaction [8], namely 

Pi(Eo, El) = n(E~ Ei) (1) 
N(Eo, E) 

Here n(E o, Ei) is the number of  all essentially different paths I from a fixed stationary 
point E o to a given point E i and N(Eo, E) is the number of essentially different paths 
from E o to any other stationary point E. If  the total number of  points belonging to the 
trees in the planes considered is r, then 

~ n(Eo, El) _ 
Pi(Eo, h~) = N(E o, E) - 1 (2) 

i=1 i=1 

One can see from Eq. (2) that the value Pi defined by Eq. (1) represents a statistical 
weight. Consider, for instance, a non-adiabatic reaction [7] determined by two surfaces 
U 1 and U2, with the numbers of stationary points m 1 and m z, respectively. The number 
of essentially different paths leading from point Eo of the first tree Tu1 to an arbitrary 
point E of the same tree, can be calculated by the formula 

N(E o, E) = (ml - 1)(m2 - 2)k12(mz - 1) k12 (3) 

Here klz is the number of "jumps" made by the representative point between the 
surfaces U1 and U z. The path leading from the initial point and then back to it again 

1 Two paths are essentially different if one of them contains at least one stationary point not 
belonging to the other. 
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has been excluded. The total number of  all different paths between E 0 on T u t  and a 
fixed point E i on the same tree equals 

n(Eo, Ei) : (m 1 - 2)k12(m2 - 1)k12 + k12 (4 )  

The last term in Eq. (4) reflects the fact that there is only one "jumpless" path on 
Tu1 connecting E o with E i. 

Taking into account Eqs. (3) and (4) one can write the statistical weights for the class 
of  non-adiabatic reactions specified by the surface pair U1 and U 2, viz. 

1 1 
P ; ( E o ,  e , . )  - - -  + ( s )  

rnl - 1 (ml  - 1)(rex - 2)kt2(m2 -- 1) kl~ 

The probabilistic model suggested here for non-adiabatic reactions can be easily exten- 
ded to the case of s excited states U 1 , U 2, . . . ,  U s with m 1, m2, �9 �9 -, ms being the 
number of  stationary points, respectively. Transition probability to the first excited 
state can be defined as in Eq. (5) [7] : 

1 kl2 
Pt  2 = - -  + (6) 

rn a - 1 (rn x - 1) I~ ( m i -  1)kiJ(mi-1 - 2) kli 
i=2 

with k/] denoting the number of non-adiabatic transitions between the planes i and ], 
kii = kii, ] = i + 1. 

5. Kinetic Models on Chemical Reaction Trees 

The existing chemical kinetics [9,101 are developed independently of  PES properties. 
In the activated complex theory, variations with time of  the reactant molecule concen- 
trations are not considered. In this connection we come to the problem of  constructing 
a kinetic model of  the chemical reaction, connected with the multidimensional PES. 
Complementing the postulates of  activated complex theory with some proportions con- 
cerning the system's dynamics one can obtain kinetic equations. The PES tree concept 
has proved most useful for constructing kinetic models of  chemical reactions charac- 
terized by multidimensional PES's [11 and 12]. 

The space of stationary points of the PES (tree vertices) can be considered as a discrete 
space of  states of  the chemical system. By the state of the system we mean the relative 
positions of  the reactant atoms (q l ,  �9 �9 qn) at which the potential energy function 
assumes stationary values E. We will now define the probability function Pi]('r, t) on 
the one-dimensional tree of the potential energy function. Should the system be in 
state E i at the moment  rr ,  the probability of it coming to state E / a t  the moment  t is 
Pij(r, O. According to the definition of  the probability function [8].  

Pij(r, t) ~> 0, ~ Pq(r,  t) = 1 (7) 
I 
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Let the value of  the probability function Pij0-, t) at t > r be completely determined by 
the state E i and be independent of the states at preceding moments of time. We then 
have [8] 

Pij(r, t) = ~. Pik(r, s) .Pgj(s, t) (8) 
k 

where Pik(r, s) is the probability of the system being found in state Ek at the moment 
s', on the condition that it was in state E i at the moment r. The definition ofPki(s, 0 
is similar. Such a process is known as the Markov process [8]. 

We will further suppose that the motion of the representative point along the PES tree 
conforms to the following postulates: 

1) Only such changes can take place in the system that correspond to transitions from 
a stationary point of the tree to closest neighbour points; 

2) transition probability functions are uniform in time, i.e. Pij(r, t + r) = Pij(t); 
3) if at some moment t the system's state was Ej, then the probability of a transition to 

a "neighbouring" state E i over time period (t, t + At) is kilAt + o(At) where kii is the 
process constant, o(At) denoting higher-order small terms; 

4) the probability of more than one change of state in the system over time (t, t + At) 
is a value of the order o(At). 

These postulates yield the following differential-difference Kolmogorov equations [8] 
for the transition probabilities 

s;j(t)-- E kn/e,n(t) (9) 
n 

where knn = - ~ k l n ,  with the summation meaning over all points j adjacent to point n. 
1 

Unfortunately, the probabilistic model considered here does not allow one to explicitly 
take into consideration the PES parameters, since the transition probabilities depending 
on these are in most cases unknown. At the same time, knowing the number of reaction 
channels on the multidimensional PES (which can be determined from the tree), one 
is able to construct correctly the Markov process and determine the summation sub- 
scripts in the Kolmogorov equation (9) strictly in correspondence with the topology of 
the stationary points distribution. Construction of the surface tree and the Markovian 
theory could be united within a single coherent logical scheme, should one know the 
probabilities of transitions between neighbouring stationary points. 

As an example of the application of the probabilistic model, consider the motion of a 
representative point along a tree associated with a first-order reversible reaction 

k12 
A ~ B [11 ]. Let the representative point make transitions only from the states 

(El,  E2) corresponding to original substances and products. The differential-difference 
equations for that case become 

P' I  l ( t )  = kzlP12(t) - k l2e l  1 (t), 

P'12(t) = k12P11(t) - k21P12(t), (10) 

P'21(t) = k21P22(t) - -  kl2P21(t), 

P;2(t) = k 1 2 P 2 1 ( 0  - k21e22(t ). 
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Let us compose a stochastic matrix 2 of the solutions to equation set (10): 

{P11(t) Px2(t)t= 
Pt = \e21(t) P22(t)] 

I__2A21+k12_ exp[-(kt2  + k21)tl k12(_l _%_exp[-(k12 _+ k21)t] ) x  

% 

k12 +k21 k12 +k21 

2 1 ( 1 - e x p [ - ( k 1 2 + k 2 1 ) t ] )  k12+kRlexp[z(k12+k21) t ]_ l  | (11) 

k12 + k21 k12 +k21 / 

The transition probability matrix (11) corresponds to an operator/3 t. We will call 
operator/~t, which is the transpose of/3r, the transition operator for the chemical system. 
It acts so as to transfer the system from one state on the PES tree to another [11 ]. 

The systems occupying some state E i are characterized by their respective concentrations 
of the constituent substances, i.e. CA(t), CB(t) . . . .  etc. It seems natural to define the 
space in which acts the transition operator as the concentration-vector space. The con- 
centration vector will be denoted by 

/CA(t)~ 
JCt(A, B, " "))=~!B: (t) ) 

The action of the transition operator Pt on the concentration vector can be described 
by the relation [11] 

PrlCo(A, B . . . .  )) = ICt(A, B . . . .  )) (12) 

where [Co(A , B . . . .  )) is the vector of original concentrations and L Ct(A , B , . . . ) )  is the 
concentration vector at the moment t. Eq. (12) can be generalized in the following 
obvious way 

PrlCr(A, B , . . . ) ) =  [Ct+ ~(A , B . . . .  )) (13) 

with [Cr(A , B , . . . ) )  denoting a concentration vector at the moment ~-. 

Eqs. (12) and (13) are integral kinetic equations for the chemical system, presented in 
the matrix form. Thus, Eq. (12) for the first-order reversible reaction coincides with 
the integral equations of chemical kinetics obtained phenomenologically in [9]. If the 
original concentration vector (CAo , CBo) and the transition probabilities on the PES 
tree are known, then Eqs. (12) allow one to establish temporal dependence of the A 
and B concentrations. 

2 A matrix whose elements are transition probabilities is called a Markov or stochastic matrix if the 
sum of elements in each row equals unity [8]. 
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We have developed a kinetic model  for the reaction that  takes into account the PES 
properties and in a way can be regarded as an extension of  the activated complex 
theory [1] ,  allowing for concentrat ion changes in the reactive system. The latter are 
described through PES parameters. 

It should be noted that  the Markovian nature of  chemical reactions has been assumed 
here without  the necessary foundations. In paper [13] an example has been presented 
of  a non-Markovian chemical transformation,  thus defining qualitatively the limits o f  
validity for the Markov models. In particular, it has been shown that  such reactions 
whose products serve as their own catalysers (auto-catalytic reactions) are non-Markovian. 

6. Conclusions 

The present investigations have shown that  a complicated mathematical  object  which 
cannot be described visually, namely the multidimensional potential  energy surface o f  
a chemical reaction, can be substi tuted for many purposes with another object that  is 
quite visual, i.e. the surface tree. The study o f  many properties of  the function depending 
on many variables (like posi t ion of  its stationary points) can be reduced to an investi- 
gation of  a function of  one argument. The latter is specified on the tree and has the value 
domain coincident with that  o f  U(q 1 . . . . .  qn).  The PES tree provides a convenient 
model  both  for adiabatic and non-adiabatic reactions, which are useful for kinetic pur- 
poses in the case o f  multidimensional PES's. In contrast  to the kinetic models known 
in the literature, the model  suggested is based on the knowledge of  topology o f  the PES 
stationary points distribution. The model  allows one to determine the system component  
concentrations at any time moment  from the knowledge of  initial concentrations,  pro- 
vided transition probabilit ies are known in the space o f  potential  energy stat ionary values. 
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